看板 [ GMAT ]
討論串[機經] Math jj-131 拋物線問題,拜託幫忙
共 4 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓3(3推 0噓 2→)留言5則,0人參與, 最新作者sausageL (走走走)時間17年前 (2008/10/31 14:09), 編輯資訊
0
0
0
內容預覽:
B沒錯喔.... 如您說所說.題目問與X軸有沒有交點.a根本不重要. 而給條件2給b可知無焦點.. 題目只要"能判斷"有沒有焦點.而不是哪個"有交點".. 這題跟OG DS 89很像. 只要知道能不能"判斷"就好.. 至於到底"能不能".或"有沒有"就不重要了.. --. 發信站: 批踢踢實業坊

推噓1(1推 0噓 8→)留言9則,0人參與, 最新作者twlarrywu (我要雞妹雞妹)時間17年前 (2008/10/30 18:18), 編輯資訊
0
0
0
內容預覽:
我想應該用b^2-4ac來判斷吧. b^2-4ac>0 2個交點. b^2-4ac=0 1個交點. b^2-4ac<0 0個交點. 所以這題如果看成 y= ax^2 + 0x +b (這邊b和上面的b不一樣,上面的b是一次項). a、b為正整數(好陰險XD). 1)a=2. 0^2-4*2*b ==
(還有101個字)

推噓1(1推 0噓 7→)留言8則,0人參與, 最新作者dandanny (今天尻了沒?)時間17年前 (2008/10/30 17:35), 編輯資訊
0
0
0
內容預覽:
這題我覺得應該是. 不用條件1 或2 即可解決了. 既然題目都說 a b 皆為正整數. a正整數代表 拋物線一定是朝上 且底部的中心 在 (0,b) 上. 既然 b也為正整數 那一定 b>=1 因此 跟 X軸不會有交點. 硬要給個答案 應該是E...0.0|||. 可是jj答案是給B. 但我覺得題目
(還有38個字)

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者oliviaisme (100的生活 我要我要我要)時間17年前 (2008/10/30 17:30), 編輯資訊
0
0
0
內容預覽:
DS題...出處不明,我在CD上看到的,應該沒有人問過吧. 131.a、b為正整數,從題幹可以推算出 y=ax^2+b 的方程式,問與X軸有沒有交點?. 1)a=2. 2)b=3. -----------------------------------------------------------
(還有44個字)
首頁
上一頁
1
下一頁
尾頁