[求譯] 摘要最後一段(自己已試著翻過希望版友꼠…
在肌電訊號的特徵值分析中,自主與非自主呼吸在三個頻段的頻譜功率皆呈現顯著
差異(p<0.05),而過零率上則有明顯的自體差異。
The result of the eigenvalue analyses in EMG signal between spontaneous and
compulsive showed a significant difference (p<0.05) on the content of three
segment of frequency. There were, however, only self-defference on zero-cross
rate.
在平台演算法的驗證,本研究以呼吸氣流溫度比對平台對於呼吸肌電訊號處理在位置與
呼吸數判斷的正確性,分別為98.9%與95.4%。而在特徵值的應用上,是以半自動的方式
做呼吸判斷,其正確率皆高於0.83%;
We also assessed the accuracy of our method for the determination of breath.
The accuracy of location and count of breath signal is 98.9% and 95.4%
respectively on the algorithm of platform. The accuracy is above 0.83% of the
eigenvalue method for determination of breath using the semi-automatic method.
此外本研究以MIT-BIH資料庫的多重睡眠電圖下巴肌電訊號驗證本研究的特徵值方法,
不但都能反應出受測者的呼吸動作(特別是在呼吸窒息的狀況),在難以觀測的肌電訊號
中也能看出其呼吸動作的特徵值變化。
Furthermore, we test the eigenvalue-method on the chin EMG signal from
MIT-BIH Polysomnographic Database. All eignevalue of EMG were response
to normal breath signal (especially at the status of dyspnea) and even
hard-to-detect signal.
以上是我的試譯,希望版友能給我些建議或指正,謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.135.100.111
※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 14:35)
※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 14:37)
※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 16:15)
※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 17:04)
Eng-Class 近期熱門文章
1
11
PTT職涯區 即時熱門文章
144
277