[求譯] 摘要最後一段(自己已試著翻過希望版友꼠…

看板Eng-Class (英文板)作者 (0000000)時間15年前 (2010/04/29 13:05), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
在肌電訊號的特徵值分析中,自主與非自主呼吸在三個頻段的頻譜功率皆呈現顯著 差異(p<0.05),而過零率上則有明顯的自體差異。 The result of the eigenvalue analyses in EMG signal between spontaneous and compulsive showed a significant difference (p<0.05) on the content of three segment of frequency. There were, however, only self-defference on zero-cross rate. 在平台演算法的驗證,本研究以呼吸氣流溫度比對平台對於呼吸肌電訊號處理在位置與 呼吸數判斷的正確性,分別為98.9%與95.4%。而在特徵值的應用上,是以半自動的方式 做呼吸判斷,其正確率皆高於0.83%; We also assessed the accuracy of our method for the determination of breath. The accuracy of location and count of breath signal is 98.9% and 95.4% respectively on the algorithm of platform. The accuracy is above 0.83% of the eigenvalue method for determination of breath using the semi-automatic method. 此外本研究以MIT-BIH資料庫的多重睡眠電圖下巴肌電訊號驗證本研究的特徵值方法, 不但都能反應出受測者的呼吸動作(特別是在呼吸窒息的狀況),在難以觀測的肌電訊號 中也能看出其呼吸動作的特徵值變化。 Furthermore, we test the eigenvalue-method on the chin EMG signal from MIT-BIH Polysomnographic Database. All eignevalue of EMG were response to normal breath signal (especially at the status of dyspnea) and even hard-to-detect signal. 以上是我的試譯,希望版友能給我些建議或指正,謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.135.100.111 ※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 14:35) ※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 14:37) ※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 16:15) ※ 編輯: spaceuit 來自: 140.135.100.111 (04/29 17:04)
文章代碼(AID): #1BsHEkPn (Eng-Class)
文章代碼(AID): #1BsHEkPn (Eng-Class)