Re: [計量] pp1 DS 167, 176
※ 引述《oranger (從新出發)》之銘言:
: 167.
: If x, y, and z are integers and xy + z is an odd integer, is x an even
: integer?
: (1) xy + xz is an even integer.
: (2) y + xz is an odd integer.
: Ans:A
: 176.
: If x and y are positive integers, is the product xy even?
: (1) 5x - 4y is even.
: (2) 6x + 7y is even.
: Ans: D
: 請大家幫忙解答了 謝謝!!
: 我想請問大家在遇到像這種算奇數偶數的題目時,
: 該怎麼解題
: 我每次只要碰到這種題目都會死的很難看 /_\ 好苦惱
167
由題目可知有兩種情況:(i) xy = odd and z = even (ii) xy = even and z = odd
(1) 考慮(i),可得xz = odd,但z = even,故不可能得出xz = odd,矛盾
考慮(ii),可得xz = even,又z = odd,則x必定為even ..........sufficient
(2) 考慮(i),可得 x = odd,代入(2)選項符合
考慮(ii),x = odd or even代入(2)選項也符合,故無法確定......insufficient
176
(1) 4y = even,and we know 5x-4y = even,then 5x must be even
since 5 is odd,so we get x is even
therefore,xy is even..............sufficient
(2) 6x = even,and we know 6x+7y = even,then 7y must be even
since 7 is odd,so we get y is even
therefore,xy is even..............sufficient
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.160.161
推
09/01 00:51, , 1F
09/01 00:51, 1F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):
GMAT 近期熱門文章
PTT職涯區 即時熱門文章
495
1154