[分享] Layout工程師很危險,Google自動晶片設計已刪文
Layout工程師很危險,Google自動晶片設計AlphaChip問世
https://www.jiqizhixin.com/articles/2024-09-27-5
2020 年,Google發表了預印本論文《Chip Placement with Deep Reinforcement
Learning》,介紹了其設計晶片佈局的新型強化學習方法。後來在2021 年,Google又發
表在Nature 上並開源了出來。
今天,Google發表了這篇Nature 文章的附錄,更詳細介紹了這個方法及其對晶片設計領
域的影響。同時, Google也開放了一個在20 個TPU 模組上預先訓練的檢查點,分享模型
權重並命名為「AlphaChip」 。
Nature 附錄網址:https://www.nature.com/articles/s41586-024-08032-5
預訓練檢查點位址:
https://github.com/google-research/circuit_training/?tab=readme-ov-file#PreTrainedModelCheckpoint
谷歌首席科學家Jeff Dean 表示,開放預訓練AlphaChip 模型檢查點以後,外部用戶可以
更輕鬆地使用AlphaChip 來啟動自己的晶片設計。
計算機晶片推動了 AI 的顯著進步,AlphaChip 利用 AI 來加速和優化晶片設計。該方法
已被用於設計Google自訂 AI 加速器(TPU)最近三代的“超人”晶片佈局。
作為首批用於解決現實世界工程問題的強化學習方法,AlphaChip 只需要數小時便能完成
媲美或超越人類的晶片佈局,而無需再花費數週或數月人工努力。而此方法設計的佈局已
應用於世界各地的晶片,覆蓋場景包括資料中心到手機。
GoogleDeepMind 表示,AlphaChip 已經徹底改變了我們設計微晶片的方式,從幫助設計
用於建立AI 模型的SOTA TPU 到資料中心CPU,它的廣泛影響已經擴展到了Alphabet 內外
。
GoogleDeepMind 聯合創始人兼CEO Demis Hassabis 表示,如今我們形成了這樣一種反饋
迴路:訓練SOTA 晶片設計模型(AlphaChip)→使用AlphaChip 來設計更好的AI 晶片→
使用這些AI 晶片來訓練更好的模型→再設計更好的晶片,這正是GoogleTPU 堆疊表現如
此好的部分原因。
各路網友對Google的AlphaChip 寄予厚望,稱「晶片設計晶片的時代來了」,也預言谷歌
將贏得未來AGI 之爭。
AlphaChip 是如何運作的?
晶片設計並非易事,部分原因在於電腦晶片由許多相互連接的塊組成,這些塊具有多層電
路元件,所有元件都通過極細的導線連接。此外,晶片還有很多複雜且相互交織的設計約
束,設計時必須同時滿足所有約束。由於這些複雜性,晶片設計師們在60 多年來一直在
努力實現晶片佈局規劃過程的自動化。
與AlphaGo 和 AlphaZero 類似,Google建構了AlphaChip,將晶片佈局規劃視為一種遊戲
。
AlphaChip 從空白網格開始,一次放置一個電路元件,直到完成所有元件的放置。然後根
據最終佈局的品質給予獎勵。谷歌提出了一種新穎的「基於邊」的圖神經網路使
AlphaChip 能夠學習互連晶片元件之間的關係,並在整個晶片中進行推廣,讓AlphaChip
在其設計的每個佈局中不斷進步。
Google借助AI 設計AI 加速器晶片
自2020 年發布以來,Google已經採用AlphaChip 為每一代Google TPU 產生超級晶片佈局
。這些晶片使得大規模擴展基於 Google Transformer 架構的AI 模型成為可能。
TPU 作為Google強大的生成式AI 系統的核心,應用範圍從大語言模型(如Gemini)到圖
像和視訊生成器(Imagen 和Veo)。這些TPU 是Google AI 服務的核心,可透過Google
Cloud 供外部用戶使用。
為了設計TPU 佈局,AlphaChip 首先在前幾代的各種晶片區塊上進行練習,例如片上和晶
片間網路區塊、記憶體控制器和資料傳輸緩衝區。這個過程稱為預訓練。然後谷歌在當前
的TPU 區塊上運行AlphaChip 以產生高品質的佈局。與之前的方法不同,AlphaChip 解決
了更多晶片佈局任務實例,因此變得更好、更快,就像人類專家所做的那樣。
隨著每一代新TPU(包括Google最新的Trillium(第6 代))的推出,AlphaChip 設計出
了更好的晶片佈局並提供了更多的整體平面圖,從而加快了設計週期並產生了性能更高的
晶片。
AlphaChip 帶來的更廣泛影響
AlphaChip 的影響力體現在Alphabet、研究界和晶片設計產業的應用。除了設計TPU 等專
用AI 加速器外,AlphaChip 還為Alphabet 的其他晶片設計佈局,例如Google Axion 處
理器,這是Google首款基於Arm 的通用資料中心CPU。
外部組織也在採用和建構AlphaChip。例如,全球頂級晶片設計公司之一聯發科擴展了
AlphaChip,以加速其最先進晶片(如三星手機使用的Dimensity Flagship 5G)的開發,
同時提高了功耗、性能和晶片面積。
AlphaChip 引發了晶片設計AI 工作的爆炸性增長,並已擴展到晶片設計的其他關鍵階段
,例如邏輯綜合和巨集選擇。
開創晶片新未來
谷歌堅信,AlphaChip 有潛力優化從運算架構到製造的晶片設計週期的每個階段,並改變
智慧型手機、醫療設備、農業感測器等日常設備中客製化硬體的晶片設計。
目前,AlphaChip 的未來版本正在開發中。谷歌期待與社群合作,繼續改變自動晶片設計
領域,進而在未來迎來速度更快、價格更低、能源效率更高的晶片。
參考連結:
https://deepmind.google/discover/blog/how-alphachip-transformed-computer-chip-design/
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.253.153.36 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Tech_Job/M.1727415433.A.B53.html
推
09/27 13:43,
1月前
, 1F
09/27 13:43, 1F
推
09/27 13:55,
1月前
, 2F
09/27 13:55, 2F
推
09/27 13:56,
1月前
, 3F
09/27 13:56, 3F
→
09/27 13:56,
1月前
, 4F
09/27 13:56, 4F
→
09/27 13:56,
1月前
, 5F
09/27 13:56, 5F
推
09/27 14:01,
1月前
, 6F
09/27 14:01, 6F
推
09/27 14:01,
1月前
, 7F
09/27 14:01, 7F
推
09/27 14:02,
1月前
, 8F
09/27 14:02, 8F
推
09/27 14:06,
1月前
, 9F
09/27 14:06, 9F
推
09/27 14:08,
1月前
, 10F
09/27 14:08, 10F
→
09/27 14:08,
1月前
, 11F
09/27 14:08, 11F
推
09/27 14:12,
1月前
, 12F
09/27 14:12, 12F
推
09/27 14:14,
1月前
, 13F
09/27 14:14, 13F
噓
09/27 14:33,
1月前
, 14F
09/27 14:33, 14F
→
09/27 14:34,
1月前
, 15F
09/27 14:34, 15F
→
09/27 14:41,
1月前
, 16F
09/27 14:41, 16F
→
09/27 14:42,
1月前
, 17F
09/27 14:42, 17F
推
09/27 14:43,
1月前
, 18F
09/27 14:43, 18F
推
09/27 14:47,
1月前
, 19F
09/27 14:47, 19F
→
09/27 14:47,
1月前
, 20F
09/27 14:47, 20F
推
09/27 14:52,
1月前
, 21F
09/27 14:52, 21F
→
09/27 14:52,
1月前
, 22F
09/27 14:52, 22F
推
09/27 15:14,
1月前
, 23F
09/27 15:14, 23F
推
09/27 15:17,
1月前
, 24F
09/27 15:17, 24F
推
09/27 15:22,
1月前
, 25F
09/27 15:22, 25F
推
09/27 15:24,
1月前
, 26F
09/27 15:24, 26F
推
09/27 15:24,
1月前
, 27F
09/27 15:24, 27F
→
09/27 15:25,
1月前
, 28F
09/27 15:25, 28F
→
09/27 15:26,
1月前
, 29F
09/27 15:26, 29F
推
09/27 15:29,
1月前
, 30F
09/27 15:29, 30F
→
09/27 15:29,
1月前
, 31F
09/27 15:29, 31F
→
09/27 15:29,
1月前
, 32F
09/27 15:29, 32F
→
09/27 15:30,
1月前
, 33F
09/27 15:30, 33F
→
09/27 15:38,
1月前
, 34F
09/27 15:38, 34F
→
09/27 15:38,
1月前
, 35F
09/27 15:38, 35F
→
09/27 15:42,
1月前
, 36F
09/27 15:42, 36F
推
09/27 15:43,
1月前
, 37F
09/27 15:43, 37F
→
09/27 15:43,
1月前
, 38F
09/27 15:43, 38F
推
09/27 15:49,
1月前
, 39F
09/27 15:49, 39F
還有 57 則推文
→
09/27 22:42,
1月前
, 97F
09/27 22:42, 97F
→
09/27 22:43,
1月前
, 98F
09/27 22:43, 98F
→
09/27 22:44,
1月前
, 99F
09/27 22:44, 99F
推
09/27 22:51,
1月前
, 100F
09/27 22:51, 100F
→
09/27 22:55,
1月前
, 101F
09/27 22:55, 101F
推
09/27 23:40,
1月前
, 102F
09/27 23:40, 102F
→
09/28 03:34,
1月前
, 103F
09/28 03:34, 103F
推
09/28 06:45,
1月前
, 104F
09/28 06:45, 104F
→
09/28 06:46,
1月前
, 105F
09/28 06:46, 105F
推
09/28 07:20,
1月前
, 106F
09/28 07:20, 106F
→
09/28 07:20,
1月前
, 107F
09/28 07:20, 107F
→
09/28 07:21,
1月前
, 108F
09/28 07:21, 108F
推
09/28 09:29,
1月前
, 109F
09/28 09:29, 109F
→
09/28 10:39,
1月前
, 110F
09/28 10:39, 110F
推
09/28 11:53,
1月前
, 111F
09/28 11:53, 111F
推
09/28 12:17,
1月前
, 112F
09/28 12:17, 112F
→
09/28 12:41,
1月前
, 113F
09/28 12:41, 113F
推
09/28 12:48,
1月前
, 114F
09/28 12:48, 114F
推
09/28 13:31,
1月前
, 115F
09/28 13:31, 115F
推
09/28 13:41,
1月前
, 116F
09/28 13:41, 116F
推
09/28 15:05,
1月前
, 117F
09/28 15:05, 117F
→
09/28 15:05,
1月前
, 118F
09/28 15:05, 118F
→
09/28 15:29,
1月前
, 119F
09/28 15:29, 119F
→
09/28 15:31,
1月前
, 120F
09/28 15:31, 120F
→
09/28 15:52,
1月前
, 121F
09/28 15:52, 121F
推
09/28 19:03,
1月前
, 122F
09/28 19:03, 122F
→
09/28 19:03,
1月前
, 123F
09/28 19:03, 123F
推
09/28 21:35,
1月前
, 124F
09/28 21:35, 124F
推
09/29 07:30,
1月前
, 125F
09/29 07:30, 125F
推
09/29 08:22,
1月前
, 126F
09/29 08:22, 126F
→
09/29 08:22,
1月前
, 127F
09/29 08:22, 127F
推
09/29 09:09,
1月前
, 128F
09/29 09:09, 128F
→
09/29 15:33,
1月前
, 129F
09/29 15:33, 129F
→
09/29 15:33,
1月前
, 130F
09/29 15:33, 130F
推
09/29 17:06,
1月前
, 131F
09/29 17:06, 131F
→
09/29 17:07,
1月前
, 132F
09/29 17:07, 132F
噓
10/01 09:02,
1月前
, 133F
10/01 09:02, 133F
→
10/01 09:02,
1月前
, 134F
10/01 09:02, 134F
推
10/02 09:55,
1月前
, 135F
10/02 09:55, 135F
推
10/03 09:19,
1月前
, 136F
10/03 09:19, 136F
Tech_Job 近期熱門文章
PTT職涯區 即時熱門文章