Re: [解題] 高一數學 資優集合問題
※ 引述《sunfin (遠方)》之銘言:
: 1.年級:高一資優數學
: 2.科目:高中數學
: 3.章節:龍騰 第一冊第一章 集合問題
: 4.題目:
∞ ∞ ∞ ∞ ∞
Let {A_n} be a sequence of sets such that ∪ ∩ A_n = ∩ ∪ A_n.
n=1 k=1 n=k k=1 n=k
Which of the following sequenses has this property?
(a) A_n = { x屬於R | -1/n < x <= 1+(-1)^n }
(b) A_n = { x屬於R | -(1+n)/n < x < (1+n)/n }
(c) A_n = { x屬於R | -(1+n)/n <= x <= (1+n)/n }
[Sol]:
(a)
∞ ∞ ∞
A_1 = (-1 , 0] ∩ A_n = [0,0], ∪ ∩ A_n =[0,0]
A_2 = (-1/2, 2] n=k k=1 n=k
A_3 = (-1/3, 0]
A_4 = (-1/4, 2] ∞ ∞ ∞
A_5 = (-1/5, 0] ∪ A_n = (-1/k, 2], ∩ ∪ A_n =[0,2]
A_6 = (-1/6, 2] n=k k=1 n=k
This sequence has no such property.
(b)
∞ ∞ ∞
B_1 = (-2 , 2 ) ∩ B_n = [-1,1], ∪ ∩ B_n =[-1,1]
B_2 = (-3/2, 3/2) n=k k=1 n=k
B_3 = (-4/3, 4/3)
B_4 = (-5/4, 5/4) ∞ k+1 k+1 ∞ ∞
B_5 = (-6/5, 6/5) ∪ B_n = (---,---), ∩ ∪ B_n =[-1,1]
B_6 = (-7/6, 7/6) n=k -k k k=1 n=k
This sequence has this property.
(c)
∞ ∞ ∞
C_1 = [-2 , 2 ] ∩ C_n = [-1,1], ∪ ∩ C_n =[-1,1]
C_2 = [-3/2, 3/2] n=k k=1 n=k
C_3 = [-4/3, 4/3]
C_4 = [-5/4, 5/4] ∞ k+1 k+1 ∞ ∞
C_5 = [-6/5, 6/5] ∪ C_n = [---,---], ∩ ∪ C_n =[-1,1]
C_6 = [-7/6, 7/6] n=k -k k k=1 n=k
This sequence has this property.
這的確是 limsup 與 liminf
但只要對集合有基本的認識,老師都應該能看得懂並作出這題的答案
要讓學生知道這題目在幹嘛很簡單
就像我上面作的事情,一項一項帶進去給學生看,一項一項推導就好了
「看不懂數列在幹什麼,就帶個幾項進去看看」
這件事是一定要教給學生的
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.42.229.80
※ 文章網址: https://www.ptt.cc/bbs/tutor/M.1428018607.A.FD9.html
→
04/03 07:52, , 1F
04/03 07:52, 1F
→
04/03 07:53, , 2F
04/03 07:53, 2F
→
04/03 07:53, , 3F
04/03 07:53, 3F
→
04/03 07:56, , 4F
04/03 07:56, 4F
討論串 (同標題文章)
tutor 近期熱門文章
PTT職涯區 即時熱門文章