Re: [解題] 高一數學 資優集合問題

看板tutor (家教)作者 (僕は美味しいです)時間10年前 (2015/04/03 07:50), 編輯推噓0(004)
留言4則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《sunfin (遠方)》之銘言: : 1.年級:高一資優數學 : 2.科目:高中數學 : 3.章節:龍騰 第一冊第一章 集合問題 : 4.題目: ∞ ∞ ∞ ∞ ∞ Let {A_n} be a sequence of sets such that ∪ ∩ A_n = ∩ ∪ A_n. n=1 k=1 n=k k=1 n=k Which of the following sequenses has this property? (a) A_n = { x屬於R | -1/n < x <= 1+(-1)^n } (b) A_n = { x屬於R | -(1+n)/n < x < (1+n)/n } (c) A_n = { x屬於R | -(1+n)/n <= x <= (1+n)/n } [Sol]: (a) ∞ ∞ ∞ A_1 = (-1 , 0] ∩ A_n = [0,0], ∪ ∩ A_n =[0,0] A_2 = (-1/2, 2] n=k k=1 n=k A_3 = (-1/3, 0] A_4 = (-1/4, 2] ∞ ∞ ∞ A_5 = (-1/5, 0] ∪ A_n = (-1/k, 2], ∩ ∪ A_n =[0,2] A_6 = (-1/6, 2] n=k k=1 n=k This sequence has no such property. (b) ∞ ∞ ∞ B_1 = (-2 , 2 ) ∩ B_n = [-1,1], ∪ ∩ B_n =[-1,1] B_2 = (-3/2, 3/2) n=k k=1 n=k B_3 = (-4/3, 4/3) B_4 = (-5/4, 5/4) ∞ k+1 k+1 ∞ ∞ B_5 = (-6/5, 6/5) ∪ B_n = (---,---), ∩ ∪ B_n =[-1,1] B_6 = (-7/6, 7/6) n=k -k k k=1 n=k This sequence has this property. (c) ∞ ∞ ∞ C_1 = [-2 , 2 ] ∩ C_n = [-1,1], ∪ ∩ C_n =[-1,1] C_2 = [-3/2, 3/2] n=k k=1 n=k C_3 = [-4/3, 4/3] C_4 = [-5/4, 5/4] ∞ k+1 k+1 ∞ ∞ C_5 = [-6/5, 6/5] ∪ C_n = [---,---], ∩ ∪ C_n =[-1,1] C_6 = [-7/6, 7/6] n=k -k k k=1 n=k This sequence has this property. 這的確是 limsup 與 liminf 但只要對集合有基本的認識,老師都應該能看得懂並作出這題的答案 要讓學生知道這題目在幹嘛很簡單 就像我上面作的事情,一項一項帶進去給學生看,一項一項推導就好了 「看不懂數列在幹什麼,就帶個幾項進去看看」 這件事是一定要教給學生的 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.42.229.80 ※ 文章網址: https://www.ptt.cc/bbs/tutor/M.1428018607.A.FD9.html

04/03 07:52, , 1F
如果你不懂的點是先交再聯還是先聯再交...
04/03 07:52, 1F

04/03 07:53, , 2F
與f(g(x))般的函數比較或許能有感覺...
04/03 07:53, 2F

04/03 07:53, , 3F
好幾層的summationΣΣΣ有看過嗎?
04/03 07:53, 3F

04/03 07:56, , 4F
另外很好奇在隔壁戰的火熱的快樂大不知道如何看待本題...
04/03 07:56, 4F
文章代碼(AID): #1L7TMl_P (tutor)
討論串 (同標題文章)
文章代碼(AID): #1L7TMl_P (tutor)