[問題] ANOVA table 是否能降維? (晶片)

看板BioMedInfo (生醫資訊)作者 (統計的巴比倫塔)時間15年前 (2010/03/09 16:34), 編輯推噓3(308)
留言11則, 3人參與, 最新討論串1/2 (看更多)
two-way ANOVA table ----------------------------------------------------- 控制組 控制組 控制組 實驗組 實驗組 實驗組 row1 15 15 15 400 400 400 row2 50 50 50 300 300 300 row3 10 10 10 200 200 200 ----------------------------------------------------- 在 交互作用不顯著 時 能否進行以下的降維動作? 三條 rows 取平均 , 變成 rowPOOL ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 控制組 控制組 控制組 實驗組 實驗組 實驗組 rowPOOL 25 25 25 300 300 300 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 或是只有交互作用不顯著的條件仍然不夠 需要其它條件 還是跟本不能這樣做? 誠心請教 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.239.247 ※ 編輯: gsuper 來自: 140.113.239.247 (03/08 23:32) ※ 編輯: gsuper 來自: 140.113.239.247 (03/08 23:32) ※ 編輯: gsuper 來自: 140.113.239.247 (03/08 23:34) ※ 編輯: gsuper 來自: 140.113.239.247 (03/08 23:35) ※ 編輯: gsuper 來自: 140.113.239.247 (03/08 23:36)

03/09 07:01,
這樣做的結果是sample size少了1/3耶....
03/09 07:01

03/09 08:12,
Interaction 不顯著固可考慮用無交互作用模型, 甚至 two-way
03/09 08:12

03/09 08:14,
簡化成 one-way, 但不宜改用 "平均值" 做分析.
03/09 08:14

03/09 08:16,
事實上 two-way without replication 本就難考慮interaction
03/09 08:16

03/09 08:17,
而僅有 one-way group means 也無法做 means 之間差異推論.
03/09 08:17
有點一言難盡.... 這個 case 實際上是這樣 ----------------------------------------------------- 控制組 控制組 控制組 實驗組 實驗組 實驗組 row1 15 15 15 400 400 400 "Inpp5d" row2 50 50 50 300 300 300 "Inpp5d" row3 10 10 10 200 200 200 "Inpp5d" ----------------------------------------------------- 右邊綠色的是 基因名 上面的 table 可以視為 one gene region Total 約 20000~30000 gene regions Naive method : 3條rows 任意一條顯著 , 就說此基因顯著 (Most people used) 但這樣會造成 Data 的浪費 或是找出一堆 outlier rows 甚至是 兩條rows 的結果矛頓 (同時支持顯著大和顯著小!?) --> 所以 rows 必需適當的整合 若是樣本夠大 確實只需要組合 one-way ANOVA 和 two-way ANOVA 就可以靠穩健性直接搞定問題 但因為在實務上樣本數都很小 (控制實驗各5片就要花 10萬 NT) 而且 PDF 為左偏 所以我覺的用 ANOVA 做檢定會有問題 (Table 內可能只有 16~40 個數字) 有人幫晶片分析設計了小樣本專用的無母數統計 (SAM) 套用 Permutation + Ordered statistic 的概念 可以搞定小樣本統計 但此統計方法是套用上述的 Naive method 所以我想是否能用 ANOVA 檢定交互作用不顯著後 直接變成 rowPool 然後就直接套用 SAM 搞定..... 避免 multiple testing 變成雞尾酒式的統計流程 所以回歸原本的問題 整合成 rowPool 是否會有什麼潛在問題 還是我跟本在亂做? 冏 ※ 編輯: gsuper 來自: 140.113.239.247 (03/09 16:29) ※ 編輯: gsuper 來自: 140.113.239.247 (03/09 16:32) -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.239.247 ※ 編輯: gsuper 來自: 140.113.239.247 (03/09 16:35) ※ 編輯: gsuper 來自: 140.113.239.247 (03/09 17:10)

03/12 21:46, , 1F
我可以想成在處理multi-probes for one gene的問題嘛?
03/12 21:46, 1F

03/12 22:47, , 2F
就是這個問題!! 沒錯~~
03/12 22:47, 2F

03/13 00:16, , 3F
R 的 affy package 不是有 summarization 的方法嗎?
03/13 00:16, 3F
在 preprocessing 中 有 summarization 方法 比方說 十條 1007_at -> 一條 1007_at 十條 104898_at -> 一條 104898_at 而在做完 annotation 後 , 會發現 1007_at -> "Surf4" 1004898_at -> "Surf4" 不同的 probeSet 卻指向相同的 Symbol 稱為 sibling probe set , 或 redundent probe set ※ 編輯: gsuper 來自: 140.113.177.165 (03/13 00:51)

03/14 15:35, , 4F

03/14 15:35, , 5F
不知道實不實用..但至少有些 discussion
03/14 15:35, 5F

03/14 15:36, , 6F
看來可能也可能要考慮為何affy設計了多個probe set
03/14 15:36, 6F


03/14 18:26, , 8F
1st 就是我準備要書報討論的 paper
03/14 18:26, 8F

03/14 18:26, , 9F
不過我覺的他的方法只適用於大樣本
03/14 18:26, 9F

03/14 18:27, , 10F
後面那篇我會努力看看 3Q
03/14 18:27, 10F

03/15 10:30, , 11F
Pubmed id: 20181266 參考看看
03/15 10:30, 11F
文章代碼(AID): #1BbWWFiV (BioMedInfo)
文章代碼(AID): #1BbWWFiV (BioMedInfo)