Re: [語文] GWD6-CR-14

看板GMAT (GMAT入學考試)作者 (老獅子)時間16年前 (2008/07/29 17:43), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
我試著解釋看看 廣告中主要的論點是:市長雖然把一些工作給拿掉了 但是他也新增了些工作 並且 這些新工作的平均薪資高於所有工作的平均 表面看來 好像是個德政 問題在於 萬一他刪掉的那些工作 平均薪水若高於 他新增工作的平均薪水 會導致全部工作的平均薪水下降 這樣還不如不要刪掉原來的工作 唯一能解套的 就是他刪掉的那些工作 不是些高薪的工作 這樣的話 就不會壓低全部工作的平均薪水 所以D的說明很合理:刪掉的工作平均薪水跟原來所有工作的平均薪水相當 這樣他們被刪掉 沒影響到整體平均 而又加上些高薪工作(題目說的) 這樣全市的平均薪水會因此而拉高些--->德政成立 ※ 引述《minimumi (米尼)》之銘言: : ★ Q14: : Political Advertisement: : Mayor Delmont’s critics complain about the jobs that were lost in : the city under Delmont's leadership. Yet the fact is that not only : were more jobs created than were eliminated, but the average pay for : these new jobs has been higher than the average pay for jobs citywide : every year since Delmont took office. So there can be no question that : throughout Delmont's tenure the average paycheck in this city has been : getting steadily bigger. : Which of the following, if true, most strengthens the argument in : the advertisement? : A. The average pay for jobs created in the city during the past three years : was higher than the average pay for jobs created in the city earlier : in Mayor Delmont’s tenure. : B. Average pay in the city was at a ten-year low when Mayor Delmont took : office. : C. Some of the jobs created in the city during Mayor Delmont's tenure have : in the meantime been eliminated again. : D. The average pay for jobs eliminated in the city during Mayor Delmont's : tenure has been roughly equal every year to the average pay for jobs : citywide. : E. The average pay for jobs in the city is currently higher than it is for : jobs in the suburbs surrounding the city. : 這題答案是(D) : CR總結上有詳細的解答~但是沒看懂 : "僅僅對比了新增工作機會和就任以來全市平均收入,如果不對比新增工作機會 : 和減少工作機會的平均收入哪個高(A),仍然有可能總收入是下降的。新增 : 的工作收入高,所以只要去掉的工作收入一樣,總平均收入還是高的。所以D對。" : 有沒有比較簡單易懂的方法可以解釋選項(D)對的原因 : (不太能懂那些收入之間的關係~腦筋轉不過來..) : 謝謝! -- No doubt, just keep walking -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.86.30

07/29 17:53, , 1F
了解了~謝謝!
07/29 17:53, 1F
文章代碼(AID): #18ZkOiQV (GMAT)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
1
1
文章代碼(AID): #18ZkOiQV (GMAT)