Re: [解題] 請教有關國二連比例的觀念~
※ 引述《armopen (考個沒完)》之銘言:
: ※ 引述《kie3013 (阿凱)》之銘言:
: : 標題請使用下列格式 [標題] 年級 科目 主題 確定無誤再行po文
: : 標題錯誤將直接刪文,不另通知,詳細內容請見置底公告
: : po文時請按ctrl+y將包含此列以上三列文字刪除
: : 1.年級:國二下
: : 2.科目:連比例
: : 3.章節:3-2
: : 4.題目:
: : (1)如果遇到問題,例如2x:4y:5z=4:12:25,則一定要設 2x=4r 4y=12r 5z=25r
: : 然後x=2r y=3r z=5r,最後在x:y:z=2r:3r:5r=2:3:5,一定要這樣的過程嗎?
: : 因為老師說不能直接移過去
: : 就是不能 x:y:z=4/2: 12/4 : 25/5,老師說這樣的做法其實不對,但請問是為什麼啊!?
: 事實上,你的作法在本題恰好正確. 但不好的習慣容易讓學生產生不良的學習遷移.
: 我舉一個例子,例如題目改成
一點疑問請教一下,
如果我這樣推導,哪裡有錯嗎?
2x:4y:5z=4:12:25 =>2x/4 = 4y/12 = 5z/25
那把上式分子的常數移到分母 => x/(4/2) = y/(12/4) = z/(25/5)
=> x:y:z = 4/2: 12/4 : 25/5
這樣不是就可以推導至結果嗎?請問哪裡有誤?
: x:y = 1:2, 求 (x + 1):y = ? 若小朋友習以為常, 直接將 x = 1, y = 2 代入,
: 會得到 (x+1):y = 1:1. 但實際上, (x+1):y 的比例並不是固定的!
: 我們教學生觀念時不能只是圖計算方便, 對於教 "對的東西" 要有所堅持.
: : (2)設xyz不等於0,又3xy=5xz=7yz,試求x:y:z?
: : 5.想法:
: : 方法1: 3xy=5xz,5xz=7yz,則 3x=5z,所以y:z=5:3,同理x:y=7:5,因此
: : x:y:z=7:5:3
: : 方法2:同除xyz 3xy/xyz=5xz/xyz=7yz/xyz
: : 約分後得到 3/z=5/y=7/x,因此x:y:z=7:5:3
: 這個方法本身正確, 但細節沒有說明清楚. 嚴謹一點的話, 由 3/z = 5/y = 7/z
: 可知 z/3 = y/5 = z/7 不是 0 (因為 xyz 不是 0), 可設為不等於 0 的數 m.
: 因此 z/3 = m, y/5 = m, x/7 = m => x = 3m, y = 5m, x = 7m.
: => x:y:z = 7:5:3.
: : 方法2老師說不能直接寫在計算題上,因為其實方法2的作法是錯的,只能偷偷寫選擇
: : 填充題的時候用,請問方法2是有哪裡不合理嗎?
: : 兩個問題~~麻煩各位老師指教一下,謝謝歐!
這裡我也有個小問題
不可以直接利用 z/3 = y/5 = x/7 得到 x:y:z = 7:5:3 嗎?
非得設m嗎?
謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.117.35.135
推
04/24 00:53, , 1F
04/24 00:53, 1F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 6 篇):
tutor 近期熱門文章
PTT職涯區 即時熱門文章