[中英] 隱藏馬可夫模型

看板Translation (筆譯/翻譯)作者 (http://0rz.tw/h1hXC)時間12年前 (2013/07/12 22:50), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
筆記: 隐马尔可夫模型 Hidden Markov Model 作者: Ranler 共享权限: CC BY-NC-SA 创建日期: 2012-06-09 12:26 修改日期: 2012-06-10 19:21 评论计数: 0 Note: Hidden Markov Model Author: Ranler Share Permission: CC BY-NC-SA Date Created: 2012-06-09 12:26 Date Modified: 2012-06-10 19:21 Comment Count: 0 1. 一个例子 1. An example 首先还是看吴军的例子:数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用 At first, we shall see an example given by Wu Jun: The Beauty of Mathematics, Series 3 -- The Application of Hidden Markov Model in Language Processing. 2. 隐马尔可夫模型 2. Hidden Markov Model 在正常的马尔可夫模型中,状态(x(t))对于观察者来说是直接可见的。 而在隐马尔可夫 模型中,状态(x(t))并不是直接可见的,但受状态影响的某些观察序列(y(t))则是可见的 。 In the general Markov model, the state (x(t)) is directly visible to the observer. By contrast, in Hidden Markov Model, the hidden state (x(t)) is not directly visible, but the observation sequence (y(t)) dependent on the state is visible. Fig: http://tinyurl.com/mvyut3s 上图中,随机过程x(t)是一个马尔可夫链,但不可见。 隐含状态x(t)决定了观察状态 y(t),第i时刻的y(ti)只由x(ti)决定,它们之间是独立输出关系。 In the figure above, stochastic process x(t) is a Markov chain, but it is not visible. The hidden state x(t) decides its corresponding observation sequence y(t), and the observation sequence y(ti) at time i is decided solely by x(ti); the observed outputs are independent of time. 因此隐马尔可夫模型是一个双重随机过程,有两个组成部分: 马尔可夫链:描述状态(x(t))的转移,用隐含状态转移概率描述。 一般随机过程:描述状态与观察序列间(y(t))的关系,用观察状态转移概率描述。 Therefore, Hidden Markov Model is a kind of doubly stochastic process composed of two parts: Markov chain: describing the transition between hidden states x(t) by transition probabilities General stochastic process: describing the relation between a state and an observation sequence y(t) by emission probabilities governing the distribution of the observed variable at a particular given state 定义隐含状态转移概率矩阵为A,观察状态转移概率矩阵为B,初始状态概率矩阵为π, 那么可以用λ=(A,B,π)三元组来简洁的表示一个隐马尔可夫模型。 Denote the matrix of transition probabilities A, matrix of observation probabilities B, and matrix of initial probabilities π. A hidden Markov model can be concisely represented by a triple λ=(A,B,π). http://www.findfunaax.com/notes/file/122 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 124.12.216.138 ※ 編輯: JinSha 來自: 124.12.216.138 (07/12 23:04)
文章代碼(AID): #1Hu1Ul8U (Translation)
文章代碼(AID): #1Hu1Ul8U (Translation)